

USING MASS FLUX ANALYSIS TO IMPROVE SITE CHARACTERIZATION AND REMEDY SELECTION

Patrick Curry, CPG - Arcadis, Novi, Michigan Joseph Quinnan, PE, PG - Arcadis, Novi, Michigan Nick Welty, PG - Arcadis, Novi, Michigan

April 20, 2016

ARCADIS Design & Consultancy for natural and built assets Design & Consultancy for natural and built assets

Outline

- Introduction to Mass Flux
 & Mass Discharge
- Stratigraphic Flux
 - Depositional Environment
 - Facies Permeability
- Hydraulic Conductivity Profiling Tools
- Case Studies

Why Does Flux Matter?

Contaminant distribution is only half of the story

 Need to distinguish mass in high permeability and low permeability zones to understand mass transport

Mass Flux describes the concentration of contaminant movement

- Understand risk
- Evaluation of focused remedy

Mass Flux and Mass Discharge

Mass Flux - the mass flow across a unit area

J = K i C (mass/time/area)

K = Hydraulic Conductivity (i.e. permeability)

i = Hydraulic Gradient

C = Concentration (in groundwater)

Mass Discharge integrated mass flux

 $M_d = \int_A J dA$ (mass/time)

- J = Mass Flux
- A = Total area

Mass Discharge (M_d)

Adapted from ITRC, 2010

Relative Mass Flux

We can drop the gradient term, as K varies >> i

Relative Mass Flux

6

Where the Groundwater Flows...

Most soil types are not aquifer material

 The aquifer matrix is laid down in high-energy environments

 High-energy environments are heterogeneous and anisotropic

© Arcadis 2015

Link mass flux analysis with classical geological interpretation to describe the 3-D aquifer architecture

- Focus evaluation on zones that matter
- Helps prioritize remediation efforts

Meandering Channel

Facies and Permeability

Detailed soil descriptions key:

- High permeability, coarse grained at base
- Decreasing permeability & grain size toward top
- 5+ orders of magnitude variability in K

Hydraulic Conductivity (cm/s)

<10⁻⁵ Storage

Slow Advection

~10-3

~10-4

Transport

~10-2

>10⁻¹

<10⁻⁵

Fast Transport

Storage

Basis for Interpolating Borings

Accretion from right to left:

- Depositional environment allows for better interpretation between borings
- Provides first basis for the interpretation of stratigraphic flux – transport vs storage

Measurement of Mass Flux and Mass Discharge

Contaminant -Passive Flux Meters Mass Tracers Well Capture Transect Methods Nichols and Roth, 2004

Traditional Transect Method

- 1. Transect perpendicular to plume
- 2. At each sample interval collect:
 - Groundwater analytical (C)
 - Hydraulic Conductivity (K)
- 3. Calculate J and M_d

Time consuming and of limited resolution:

- Conductivity measurements typically bias low
- averaged across several feet

 $Md = \int_A J dA$

Nichols and Roth, 2004

K Profiling Tools

Geoprobe Hydraulic Profiling Tool (HPT):

 Inject 200-300 ml/min of water and records aquifer response

Waterloo Advanced Profiling System:

 Similar approach as HPT, can collect groundwater samples in same push

CPT Pore Pressure:

 Ambient pressure response to cone advancement

K Profiling Tools

Map facies and permeability with continuous relative K profile:

- HPT Est. K (Q/P)
- Waterloo Profiler Index of K

The K Challenge

Hydraulic profiling tools easily separate:

 Transport zones from storage zones

Estimate absolute K in relatively small window of conductivity:

- ~ 10⁻⁴ to 10⁻² cm/s
- Slow advection to low-end of transport range

Permeability (cm/s)

Groundwater Concentration

Transport Zones

Vertical aquifer profiling

- Direct Push: screen point sampler
- Sonic: temporary well / packer assembly
 - Drilling with water requires dye
- Traditional (Augers): temporary wells, Simulprobe
- Waterloo Profiler, HPT-GW

Storage Zones

Saturated soil sampling

 Estimate groundwater concentration based on partitioning or leaching method

Case Study: Flux Based Optimization of P&T System

Scope

Optimize capture of existing P&T system

- Stratigraphic flux transect around northwest corner of property
- HPT for relative K
- Vertical aquifer profiling for concentration

Geologic Setting

Sea Island Section of Atlantic Coastal Province:

- barrier islands
- salt marsh deposits
- streams

PARCADIS Design & Consultancy for natural and built assets

Geologic Setting

Cypresshead Formation:

- Upper "massively bedded" fine sand
- Lower- greater clay and silt fraction

Hydraulic Profiling

Geoprobe® HPT Tool

Relative K

Flow (Q) / Pressure (P) = Est. K(Q/P)

 Q/P corrected based on empirical relationship with slug test data developed by Geoprobe

Stratigraphic Correlation

Naphthalene (ppb)

<1,000

© Arcadis 2015

<1.000

Case Study: 3D Stratigraphic Flux

Multliple Transects

Stratigraphic Flux Model

Summary

Hydrofacies mapping & hydraulic profiling provide key advantages:

- Relative K can be displayed graphically, or interpreted in 3D model
- Allow for stratigraphic correlation and mapping of permeable zones
- Methods readily distinguish transport zones from storage zones - "stratigraphic flux"

Summary

Stratigraphic Flux: Focus the evaluation on zones that transport mass

Focus on the Mass that Matters

Thank you!

Patrick.Curry@arcadis.com

Joseph.Quinnan@arcadis.com

Nick.Welty@arcadis.com

